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Generalized Relativity: A Unified Field Theory
Based on Free Geodesic Connections in Finsler Space
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An equation of structure on space-time is developed using the methods of Finsler
geometry with an essentially unrestricted connection function, corresponding to
a specification of the geodesic curves in the manifold. This contrasts with the
usual approach in which the connection is derived in an explicit and restrictive
manner from a metric. The equation of structure based on the “free” geodesic
connection is found to incorporate, as a special case, equations which are closely
comparable to both Einstein’s equation of gravity in the presence of
electromagnetic energy and Maxwell’s equations for a chargeless electromagnetic
field. Beyond this unification of electromagnetism and gravity, the theory appears
to offer a wide scope for consideration of additional implications which may
provide insights into other observed phenomena.

1. BACKGROUND

1.1. Introduction

This paper seeks to formulate the basis for a unified field theory using
the methods of Finsler geometry. This objective has attracted the attention
of a number of workers over a period of more than 50 years, dating back to
Randers’ (1941) original suggestion of a unified metric in the form

dl 5 1!gij
dx i

dt
dx j

dt
1 Ai

dxi

dt2 dt

Examples of authors who have addressed this subject include, in addition to
Randers, Stephenson and Kilmister (1953) and Beil (1987, 1996).

Randers metric approaches are tantalizing, especially because the equa-
tion of a geodesic curve under a Randers metric closely matches the Lorentz

1 22 Hobart Rd., Newton Centre, Massachusetts 02459-1313; e-mail: tpstorer@ix.netcom.com

1351
0020-7748/00/0500-1351$18.00/0 q 2000 Plenum Publishing Corporation



1352 Storer

equation for the motion of a charged particle in electromagnetic and gravita-
tional fields. None of the work to date, however, has been able to achieve a
complete and satisfactory unification of the field equations of gravity and
electromagnetism on the basis of the Randers metric or any other Finsler
approach. The present work may offer a step toward that objective.

The present theory begins with a geodesic function, that is, a function
Bk(x, y) which defines a collection of geodesic curves Ck(t) in a manifold
by specifying the “bend” d 2Ck(t)/dt2 5 2Bk(Ci, dCi/dt) of the geodesic
which passes through each given point in each possible direction at that point.
The geodesic function is not required to be defined uniquely by a particular
metric, although it may be expected to be consistent with some metric in the
sense that all geodesic curves defined by the geodesic function will be
length-extremizing as measured under that metric. Starting from the geodesic
function, the theory then proceeds in a straightforward way by defining a
connection that is derived directly from the geodesic function, and using this
connection to define a curvature tensor whose trace is set equal to zero to
form the theory’s equation of structure.

The free geodesic approach eliminates a significant constraint which
has bound those theories which assume that the connection must be defined
uniquely by a metric. Applying the results to geodesic functions that are
consistent with the Randers metric, it is found that the equation of structure
includes equations which are closely comparable to both Einstein’s equation
of gravity in the presence of electromagnetic energy and Maxwell’s equations
for a chargeless electromagnetic field.

1.2. Basic Concepts and Notation

Let M be a manifold. Given a point x in M, we denote the tangent space
over x by TxM. The tangent bundle of M, consisting of the collection of all
of the TxM with the canonical projection which carries every point in each
TxM onto x, is denoted by TM. Functions in Finsler geometry are frequently
limited to the “punctured” or “slit” tangent bundle TM \{0} formed by remov-
ing the origin from each TxM. The tangent sphere over x, SxM, is the quotient
space formed by identifying all points on each ray outward from the origin
in the corresponding TxM \{0}, and the bundle formed from all of the SxM
is SM. Elements of TM may be referred to as “velocities,” while elements
of SM may be referred to as “directions.”

Points in a Finsler space over space-time are represented by an octuple
of real numbers (xi, yi), where the xi represent the coordinates of a point in
space-time and the yi 5 dxi/dt represent the coordinates of a vector in the
tangent space TxM using the coordinate system which is induced by the
coordinate system in M.
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We define a curve C to be a subset of M which can be represented as
the range of a smooth function Ck(t) of a real parameter t together with an
orientation which is established by specifying a direction tangent to the curve
at any point on the curve. A given curve can be represented by many different
parametrizations. A “good” parametrization is one which is monotonically
increasing in a direction which is consistent with the orientation of the curve
(i.e., dCk/dt must have the same direction as the specified direction at the
point where it is specified). Any good parametrization associates each point
x on the curve with a point in TxM \{0} by (Ck(t)) → (dCk/dt). If a different
parametrization is selected, each point is associated instead with dCk/ds 5
(dt/ds) dCk/dt, which lies on the same outward ray from the origin in TxM.
Thus we have a well-defined (for good parametrizations) association of each
point x on the curve with a point in the corresponding SxM, representing the
direction of the curve at x.

We will designate derivatives with respect to the x coordinates by a
subscript preceded by a comma:

f,i 5
f
xi (1)

We will use the same notation to designate differentiation with respect
to a scalar independent variable, such as a parameter, in which case the
comma is placed before the name of the independent variable in the subscript:

Ck
,t 5

dCk

dt
(2)

Many papers on Finsler geometry designate derivatives with respect to
the y coordinates by plain, unadorned subscripts. This can sometimes lead
to confusion when other subscripted (covariant) variables also appear. Accord-
ingly, we will adopt a convention of designating y derivatives by a caret
before the subscript:

f∧i 5
f
yi (3)

A function f is said to be homogeneous of degree n if

F(xi, myi) 5 mn F(xi, yi) ∀m . 0 (4)

where n may be positive, zero, or negative. A function that is homogeneous
of degree one is also simply referred to as a “homogeneous function.”

The following relation, based on Euler’s equation, applies to any differ-
entiable function f of degree n:
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f∧i yi 5 nf (5)

2. GENERALIZED RELATIVITY

2.1. Geodesics and Connections

Typically, the definition of a connection, in both Riemannian and Finsler
geometry, has begun with a metric which, together with its x and (in the
Finsler case) y derivatives, is used to specify the connection. In the Finslerian
case, several different connections have been identified, each with its own
special characteristics. The principal metric-based connections are identified
and discussed in Asanov (1985) and Bao et al. (1996). Geodesic curves Ck(t)
are derived from the connection by stipulating that the vector Ck

,t will be
carried along the curve by parallel transport, thus Ck

,t,t 5 2Gk
ijCi

,tCj
,t, where

Ck(t) is the geodesic and Gk
ij is taken to represent the connection. We will

refer to this metric-based approach, with its variety of connections, as the
“standard approach.”

As outlined in the Introduction, we shall follow a different tack, begin-
ning with the geodesics. We define a geodesic collection as a set C of smooth
curves on M satisfying the following requirement: for each x P M and for
each l P SxM there is one and only one curve C P C which passes through
x in direction l.

A geodesic function is defined as a smooth contravariant function
Bk(xi, yi) on TM \{0} which specifies the members of a geodesic collection
by the relation

Ck
,t,t(t) 5 2Bk(Ci(t), Ci

,t(t)) (6)

for each x P M and for each y P TxM at that x. Clearly Ck
,t,t(mt) 5

m2Ck
,t,t(t), so Bk is homogeneous of degree two. The geodesic function Bk is

“free” in the sense that it is not restricted to any particular values derived
from an initially selected metric. The only restriction will come from the
equation of structure which we will develop.

The geodesic function is not uniquely associated with the geodesic
collection because it is dependent on the parametrization of the geodesics.
For any geodesic function Ck(t), if we replace the parameter t with s(t),
we have

Ck
,t,t 5 2B(t)k(Ci, Ci

,t)

5 Ck
,s,ss2

,t 1 Ck
,ss,t,t

5 2B(s)k(Ci, Ci
,s)s2

,t 1 Ck
,ss,t,t (7)

where B(t)k and B(s)k refer to the geodesic functions generated by the t- and
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s-parametrizations, respectively. Since Bk is homogeneous of degree two and
Ci

,t 5 Ci
,ss,t, we have, evaluated at (Ci, Ci

,s),

B(t)k 5 B(s)k 2
s,t,t

s2
,t

yk (8)

We define the connection by

Bk
i 5 Bk

∧i (9)

Also,

Bk
ij 5 Bk

i∧j (10)

For an arbitrary function f defined on TM \{0}, the tensor derivative
based on the free geodesic connection, which we will designate by a star (∗)
before the index, is

f
*i 5 f,i 2 1–2 f∧mBm

i (11)

The tensor character of f*i can be verified as follows. Let {xi} and {xi8}
represent two sets of coordinates on M, which generate coordinates {yi} and
{yi8}, respectively, on the Tx M. We then have

f,i8 5 f,i xi
,i8 1 f∧i yi

,i8

5 f,i xi
,i8 1 f∧i( y j8xi

,j8),i8

5 f,i x i
,i8 1 f∧i x i

,i8,j8y j8 (12)

On the other hand, it is clear that

f∧m8 5 f∧m ym
∧m8 1 f,m xm

∧m8

5 f∧m( yn8xm
,n8)∧m8

5 f∧mdn8
m8xm

,n8

5 f∧m xm
,m8 (13)

where dn8
m8 is the Kronecker delta. The second term on the first line and the

y derivative of the second factor in parentheses in the second line are both
zero because a change in a vector in Tx M (whether measured by primed or
unprimed coordinates) does not change the underlying point x P M. Finally,
for the variance of the geodesic function, we have

Bk8 5 2Ck8
,t,t

5 2(Ck
,txk8

,k),t
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5 2Ck
,t,txk8

,k 2 Ck
,txk8

,k,iCi
,t

5 Bkxk8
,k 1 xk8

,k xk
,i8,j8yi8y j8 (14)

where in the final equality we have made use of 0 5 (dk8
j8 ),i8 5 (xk8

,k xk
,j8),i8 5

xk8
,k,i xk

,j8xi
,i8 1 xk8

,k xk
,i8,j8, therefore (multiplying by xi8

,m x j8
,n and changing indices),

xk8
,k,i 5 2xk8

,m xm
,i8,j8xi8

,i x j8
,k. Putting these results all together, we have

f*i8 5 f,i8 21–2 f∧k8Bk8
∧i8

5 f,i x i
,i8 1 f∧i x i

,i8,j8y j8 21–2 f ∧k xk
k8(Bpxk8

,p 1 xk8
,m xm

,m8,n8ym8yn8)∧i8

5 f,i x i
,i8 2 1–2 f ∧kBk

∧i x i
i8

5 f*i xi
i8 (15)

where, in the second line, the second term cancels with the second term in
parentheses, eliminating the unwanted variance.

Tensor derivatives of functions with covariant and/or contravariant indi-
ces necessarily involve additional terms similar to those found in Riemannian
analysis. Thus the general definition of a tensor derivative using the free
geodesic connection Bk is

( f i1Pia
j1Pjb)*m 5 ( f i1Pia

j1Pjb),m 2 1–2 ( f i1Pia
j1Pjb)∧kBk

m

1 1–2 ( f ki2Pia
j1Pjb )Bi1

km 1 P 1 1–2 ( f i1Pia21k
j1Pjb )Bia

km

2 1–2 ( f i1Pia
kj2Pja)B

k
j1m 2 P 2 1–2 ( f i1Pia

j1Pjb21k)Bk
jbm (16)

2.2. Curvature, and Equation of Structure

It can be shown that for any f,

f*i*j 2 f*j*i 5 21–2 f∧k Sk
ij (17)

where Sk
ij is a homogeneous function of degree 2 defined by

Sk
ij 5 Bk

i,j 2 Bk
j,i 2 1–2 Bk

imBm
j 1 1–2 Bk

mjBj
i (18)

Sk
ij is therefore a tensor on TM \{0}, and naturally suggests itself as the

curvature tensor associated with the geodesic function Bk.
Setting the trace of the curvature tensor to zero, we have the following

as our proposed equation of structure:
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Si 5 Sj
ij

5 Bj
i,j 2 Bj

j,i 2 1–2 Bj
imBm

j 1 1–2 Bj
jmBm

i

5 0 (19)

We can replace (19) with two somewhat simpler equations:
1–2 Si yi 5 B j

,j 2 1–2 B j
j,i yi 2 1–4 B j

mBm
j 1 1–2 B j

jmBm 5 0 (20)

Si 2 (1–2 Sjy j)∧i 5 1–2 (B j
ji,k yk 2 B j

j,i 2 Bj
ji∧m Bm) 5 0 (21)

Defining B 5 Bj
j, we can write (21) as follows:

B∧i,k yk 2 B,i 2 B∧i∧k Bk 5 0 (22)

2.3. Consistent Metrics

Up to this point, we have worked without any metric. Let us assume
now that there is a homogeneous function F, the metric, on TM \{0}, and
define Fi 5 F∧i and Fij 5 Fi∧j. We assume also that all of the geodesics in
the geodesic collection represented by Bk are locally length-extremizing under
the metric F, i.e.,

d #
t1

t0

F(Ci(t), Ci
,t(t)) dt 5 0 (23)

It is well known that this local extremization implies the following
relationship between F and each geodesic curve Ck(t):

FikCk
,t,t 1 Fi,k yk 2 F,i 5 0 (24)

In view of (6), we have

Fik Bk 5 Fi,k yk 2 F,i (25)

We will say that a metric that satisfies (25) is consistent with the geodesic
function Bk.

The consistency relationship between geodesic curves and geodesic
functions is not one-to-one. Because Fi is homogeneous of degree zero, then
Fikyk 5 0, and Bk may thus be changed by the addition of any term of the
form kyk (k an arbitrary homogeneous function) without changing the result.
This transformation corresponds to the transformation in the geodesic function
that results from a change in the parameters of the geodesic curves as shown
in (8), with k 5 2s,t,t /s2

,t.
We can apply these principles to define an equivalence relationship

among geodesic functions which are consistent with the same metric, as
follows:
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Bk , Bk 1 kyk (26)

where k is an arbitrary homogeneous function on TM \{0}. We can use this
relation to establish a technique for moving from the metric to a consistent
geodesic function, which will be particularly useful in dealing with the
Randers metric.

Given a metric F, Fij is a homogeneous function of degree negative one.
Assume that there is a homogeneous function h jk, symmetric in the j and k
indices, that satisfies

h jkFij 5 dk
i 1 ui yk (27)

where ui is an arbitrary indexed function, homogeneous of degree negative
one.

It is easy to see that (27) can be satisfied in any case where the metric
function gij 5 1–2 (F 2)∧i∧j has a nonzero determinant. In this case, we can define
g jk by g jkgij 5 dk

i , and then (27) will be satisfied by h jk 5 Fg jk, just as
one example:

FgjkFij 5 Fg jk(!F 2)∧i∧j

5 Fg jk1(F 2)∧i∧j

2F
2

(F 2)∧i(F 2)∧j

4F 3 2
5 Fg jk1gij

F
2

Fi

F 2 gjm ym2
5 dk

i 2
Fi

F
yk (28)

Thus (27) is satisfied with ui 5 2Fi /F. In contrast to g jk, h jk is not well
defined by (27), since (27) is also solved by any h̃ jk 5 h jk 1 zjyk 1 zky j, where
zj is an arbitrary indexed function, homogeneous of degree negative one.

We now have a collection of solutions to (25) if we define

Bk 5 h jk(Fj,m ym 2 F,j) 1 kyk (29)

because then

FikBk 5 Fik(h jk(Fj,m ym 2 F,j) 1 kyk)

5 (d j
i 1 ui y j)(Fj,m ym 2 F,j)

5 Fi,m ym 2 F,i (30)

Comparing (25) with (22), it is easy to see that (22) is satisfied if we
have Bk consistent with F and
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B 5 lF 1 f,iyi (31)

where l is a “universal” constant and f is a function of x only. It is not clear
whether (31) is also a necessary condition to B’s satisfaction of (22), but we
will use this as a working assumption. It should be noted that the term f,iyi

reflects a gauge freedom in F in that it can be incorporated in F without
affecting the calculation in (25). This term therefore does not have to be
expressed separately in (31), but it will prove useful for future purposes to
retain it. Taking this into account, we see that, in the case of metric-compatible
geodesic functions, we can reduce the equation of structure to two equations—
(20) and (31)—in two independent variables—F and k, which are together
sufficient to specify Bk employing (27) and (29).

It is also interesting to note that if we begin with a geodesic function
that satisfies the equation of structure, and if l Þ 0, then we can determine
a consistent metric from the geodesic function by simply setting F 5 B. In
this case, (25) is clearly satisfied by virtue of (22).

2.4. Comparison of Approaches

Now that we have laid out the basic elements of the free geodesic theory,
it is time to pause to reflect on its significance in relation to the standard
approach to Finsler analysis.

The real point of departure comes in the different responses to (25).
This equation defines the relationship between the metric function and the
geodesic function, but, given a metric, the metric does not uniquely define
the geodesic function or the connection, either in the Finsler context or in
the Riemannian context. Versions of the standard approach, however, uni-
formly start from the premise that such a correspondence must be imposed
in some way so that there will be a unique, well-defined connection function
derived from the metric. Thus, in the Riemannian context, the standard
formulation of general relativity assumes that the connection must be affine,
which forces a one-to-one correspondence with the metric.

In Finsler geometry, the tendency has been to work with methods that
stick closely to the techniques that have proved successful in the Riemannian
context. Even though Finsler geometry is distinguished by the fact that the
metric can be expressed as a scalar, F(x, y), the focus in building connections
has been on the covariant metric function gij 5 1–2 (F 2)∧i∧j rather than on F
itself. [Beil’s (1996) theory even starts with a covariant metric function which
is not derived from F, and is not a y derivative of any function.] gij looks,
and to some extent behaves, like the Riemannian metric function. In particular,
it is (unlike Fij ) generally amenable to the definition of a contravariant
counterpart gjk via the requirement g jkgij 5 dk

i , enabling the creation of a
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“natural” geodesic function satisfying (25) by a formula which is almost
identical to that for the affine connection in Riemannian geometry:

Gk 5 1–2 gkm(gim,j 1 gjm,i 2 gij,m) yiy j (32)

This geodesic function can be used to define a connection Gk
ij 5 Gk

∧i∧j, the
Berwald connection. For geometers, the Berwald connection is not totally
satisfying because it is neither metric-compatible (the tensor derivative of
the metric function is not identically zero) nor torsion-free (the order of the
indices affects the result in double tensor differentiation of a scalar function).
By adding extra terms, it is possible to create variants that are either metric-
compatible (the Cartan connection) or torsion-free (the Chern connection).
These connections have been found useful in a variety of geometric studies,
but have not found any application to physical science.

From a philosophical standpoint, however, there is much to be said for
the Finsler approach to formulation of a unified field theory. As Riemann
himself acknowledged, the limitation of standard Riemannian analysis to a
quadratic form of metric is essentially arbitrary, reflecting principally the
need for computational simplicity rather than any universal principle. There
does not appear to be any a priori reason why we should assume that the
structure of the universe is so simple that distances in space-time can always
be measured in this particular way. Or, put another way, it seems that there
ought to be some way of extending the success of general relativity to a
more broadly defined metric.

If we are to make another try at a physically meaningful Finsler theory,
the idea of basing it on a geodesic function rather than on a metric also has
philosophical appeal. A geodesic, viewed as a collection of points, represents
a tangible object in space-time, and a geodesic collection—which is what
the geodesic function represents—seems to offer a very fundamental way of
expressing the “self-connectedness” of space-time. A metric, on the other
hand, is an abstract concept, created by an observer for the purpose of
describing and analyzing the objects he observes. If a theory is to capture
the structure of space-time on anything like an “absolute” basis, it seems
that it should start with something that is integrally a part of space-time, not
with some abstraction. This perspective takes on greater importance when
we confront the fact that standard Finsler geometry offers a plethora of
connections, with no solid basis for choosing one over another.

To be sure, the geodesic function contains an arbitrary aspect, that of
parametrization, in addition to its description of the geodesic collection. We
may, however, relate the theory directly to the geodesic collection by viewing
the geodesic function as a representative of an equivalence class of geodesic
functions as defined in (26). Similarly, we define equivalence classes of
curvature tensors,
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Sk
ij , Sk

ij 1 (k∧i∗j 2 k∧j∗i)yk

1 dk
i (k∗j 2 1–2 kk∧j) 2 dk

j (k∗i 2 1–2 kk∧i) (33)

and of curvature traces,

Si , Si 1 k∧i∗jy j 2 4k∗i 1 3–2 kk∧i (34)

where k in each case represents an arbitrary scalar function on TM \{0}. We
now recognize that the appropriate measure of the curvature of M is an
equivalence class of tensors on TM \{0} in the form Sk

ij as defined by (33),
and not the tensor itself. Two curvature tensors which fall within the same
equivalence class must be regarded as representing the same physical curva-
ture. This interpretation seems virtually unavoidable given that otherwise we
could have two manifolds all of whose geodesic curves (viewed as sets of
points) are identical, but which have different curvatures at all points. Making
use of the equivalence class of curvature traces, we can now write the equation
of structure in the form

[Si] 5 [0] (35)

where the brackets designate an equivalence class as defined in (34).
This approach addresses to some extent Bao et al.’s (1996) call for a

focus on SM as one of the principal entities of Finsler geometry. The equiva-
lence classes of geodesic functions effectively measure the changing of the
direction (a vector in SM ) of a tangent to the curve as one traces along its
length, without regard to the particular velocities (vectors in TM ) that arise
from particular parametrizations of the curve. On the other hand, we cannot
limit our attention to tensors defined on SM, because the equivalence classes
begin to take on a more complex structure as the analysis proceeds.

It should be noted that we have gone straight from the equivalence
classes of geodesic functions to the equivalence classes of curvature tensors
without attempting to derive the latter from any equivalence classes of tensor
derivatives, as in (11) and (17). It is easy enough to define equivalence
classes of tensor derivatives based on the equivalence classes of geodesic
functions, but if this were then applied in (17) we would find an excessive
amount of variance in the definition of the curvature tensor since we would
have to use a distinct variance function in lieu of k for each time Bk appears
in the formula. Evidently the notion of curvature and the equation of structure
are tied much more closely to the geodesic collection and are not dependent
on the notion of a tensor derivative.

In any event, the geodesic collections on M stand in a one-to-one relation-
ship with the equivalence classes [Bk] of geodesic functions, and the [Si]
represent a well-defined functional of the [Bk]. Thus the equivalence-based
equation of structure, (35), reflects in a well-defined manner the inherent
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structure of M as embodied in the geodesic collection. By focusing on the
equivalence classes of functions related to the geodesic collection, we have
eliminated the apparent arbitrariness involved in the choice of parametrization
of the geodesics.

It was suggested earlier in this section that the objective of this work
is to find “some way of extending the success of general relativity to a more
broadly defined metric.” Based on the results to be shown in Section 3, we
believe that this objective may well have been achieved. Accordingly, we
propose to refer to the free geodesic theory and its equation of structure,
(19), by the name “generalized relativity.”

3. APPLICATION TO THE RANDERS METRIC

3.1. Preliminaries

As presented, the equation of structure of generalized relativity is not
limited to any particular form of metric. On the other hand, any attempt to
find general solutions must confront a great deal of inherent complexity, and
it is not easy to see how the equation might reflect the physical world without
reducing it to a form that can be expressed and understood in terms of
Riemannian space. We therefore move to a consideration of how the equation
of structure applies in the case of a metric that is limited to the Randers
form. In taking this step, however, we must emphasize that we are not limiting
in any way the scope of the equation of structure developed in Section 2.
We hold to the proposition that (19) provides a complete description of the
structure of space-time. This section presents only the results of applying
that description to a narrow, but highly salient, class of possible metrics and
geodesic functions from among all those that are available on TM \{0}.

Thus we assume

F 5 g 1 2Ai (x)yi (36)

where we define

g 5 !2gij(x)yiy j (37)

Throughout this section, gij and g jk will be used to refer to the standard
Riemannian metric and its contravariant counterpart, not the Finslerian ver-
sions. Also, we will use gij and g jk to raise and lower indices in the standard
way. Later in this section we will use the standard notation Fij 5 Ai,j 2 Aj,i,
which should not be confused with the Finsler function Fij 5 F∧i∧j as used
previously and in Section 3.2. The coefficient in the A term in (36) and the
negative sign within the square root in (37) have been included to assure
that the results will match to standard scaling and sign conventions, as will
be seen.
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3.2. Determining h jk

Calculating the second y-derivatives of (36), the y-linear term Ai yi is
eliminated, and we have

Fij 5 2
gij

g
2

gimgjn ymyn

g3 (38)

We define

h jk 5 2gg jk (39)

Then

h jkFij 5 2gg jk12
gij

g
2

gimgjnym yn

g3 2
5 dk

i 1
gim ymyk

g2 (40)

Thus h jk satisfies (27) with ui 5 gim ym/g2.

3.3. The Geodesic Function

Substituting (36) and (39) in (29), we then have

Bk 5 Gk
ij yiy j 2 2F k

j y jg 1 k8yk (41)

where

Gk
ij 5 1–2 gkm(gmi,j 1 gmj,i 2 gij,m) (42)

Fij 5 Ai,j 2 Aj,i (43)

and

k8 5 k 2
gmn,p ymynyp

2g2 (44)

is a function on TM \{0}.
We may contrast this very streamlined geodesic function with the diffi-

culties that are encountered in an attempt to apply the standard Finslerian
approach to the Randers metric. For purposes of this subsection, we will use
gij and g jk to represent the Finsler metric function and its contravariant
counterpart as distinguished from the Riemannian versions; thus gij 5
1–2 (F 2)∧i∧j and g jkgij 5 dk

i . In the standard approach, first, we find that g jk is
essentially impossible to express explicitly in terms of the Riemannian ele-
ments of the Randers metric because of the extra terms encountered in
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gij 5 2gij 1 4AiAj 2 2(gim Aj 1 gjm Ai 1 gij Am)
ym

g

2 2gimgjn Ap
ymyny p

g3 (45)

A second problem comes in working out the expression within parentheses
in the definition of Gk, at (32), which results in a bewildering array of terms.
We can try to reduce this to its bare electromagnetic essentials by assuming
constant gij and disregarding second-order terms in Ai and its derivatives,
which yields

Gk 5 1–2 gkm(gim,j 1 gjm,i 2 gij,m)yiy j

5 1–2 gkm((F 2)∧m,i yi 2 (F 2),m)

' 22gkiFij y jg 1 2Ai∗j
yiy jyk

g3 (46)

The extra term on the right stands in the way of any attempt to create a
physically meaningful field equation out of the Randers metric using the
standard approach. Both of these issues are resolved directly and without
any contrivance in the free geodesic approach.

3.4. Calculating and Simplifying k8

Based on (41) and the working assumption referred to at (31) above, and
assuming here and for the balance of this paper that M has four dimensions, we
have

B 5 2Gk
ikyi 1 5k8

5 (ln(2det(gjk))),i yi 1 5k8

5 l(g 1 2Ai yi) 1 f,i yi (47)

For present purposes, we will assume that l is zero or negligibly small, and
we will thus ignore it in order to show the resulting equations most simply.
We then have

k8 5
1
5

(f 2 ln(2det(gjk))),i yi (48)

We now define

K 5 exp12
1
10

(f 2 ln(2det(gjk)))2 (49)

which is a Riemannian variable. Then, combining (41), (48), and (49), we have
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Bk 5 Gk
ij yiyj 2 2F k

j y jg 2 2
K,i

K
yiyk (50)

3.5. Randers-Metric Equation of Structure

Substituting (50) in (20), we complete the equation of structure for the
Randers metric, assuming l 5 0, resulting in the following:

1–2 Si yi 5 1Rij 2 2Fim Fj
m 2 gij FmnF mn1 3

K,i;j

K 2yiy j

1 21Fi
m

;m 2 3
K,m

K
Fi

m2yig

5 0 (51)

where

Rij 5 Gk
ij,k 2 Gk

ik,j 2 Gk
imGm

ik 1 Gk
mkGm

ij (52)

is the Ricci tensor of general relativity, and a semicolon before an index in
a subscript indicates a tensor derivative calculated using the gravitational
metric gij.

Since (51) must be true across all of TM \{0}, i.e., for all ( yi) and
accordingly for all g, it gives us two separate equations on M corresponding
to the fundamental equation:

Rij 2 2FimFj
m 2 gij FmnF mn 1 3

K,i;j

K
5 0 (53)

Fi
m

;m 2 3
K,m

K
Fi

m 5 0 (54)

3.6. Results of Applying the Contracted Bianchi Identity

Applying the contracted Bianchi identity to (53), after some manipulation
and substitutions based on (53) and (54), we find the following:

1FmnF mn 1 gmn
K,m;n

K
2 4gmn

K,mK,n

K 2 2
;i

1 2
K,i

K 1FmnF mn 1 gmn
K,m;n

K
2 4gmn

K,mK,n

K 2 2 5 0 (55)
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Thus

FmnF mn 1 gmn
K,m;n

K
2 4gmn

K,mK,n

K 2 5
F
K 2 (56)

where F is a “universal” constant.
We can use this result in making a preliminary evaluation of whether

the system represented by (53) and (54) has an initial value formulation. In
the case of the vacuum Einstein equation of general relativity, the contracted
Bianchi identity reveals four interdependencies among the 10 field equations,
leaving 6 independent equations. Also in that case, the 10 variables in the
components of gij reflect only 6 true degrees of freedom in the physical
description because of the gauge invariances related to transformations in
the four-dimensional coordinate system. With 6 independent equations and
6 “nongauge” variables, the vacuum Einstein equation is thus open to an
initial value formulation, as discussed in Wald (1984). In (53) and (54), the
contracted Bianchi identity represents just 3 interdependencies, since the four
equations of the identity are reduced to one nontrivial equation, (56). An
additional interdependency arises from (54) as follows: define Fi 5 Fi

m
;m 2

3(K,m /K )F i
m; we then have, as an identity, (Fi /K3);i [ 0, which establishes

the interdependency. Thus in this case we have 10 independent equations
[14 basic equations in (53) and (54) minus a total of 4 interdependencies]
and 10 “nongauge” variables (10 components of gij plus 4 components of Ai

plus 1 component of K, minus 4 degrees of coordinate gauge freedom in the
gij minus 1 degree of Lorentz gauge freedom in the Ai). Thus, although
it might seem at first that the introduction of K would leave the system
underdetermined, the free geodesic equation of structure under the Randers
metric with l 5 0 appears also to be open to an initial value formulation.

3.7. Reformulation

Looking at the two equations developed in Section 3.5, we see that:
First, (54) is nearly identical to Maxwell’s vacuum electromagnetic field

equations, but for the second term on the left. Assuming that K,m/K is very
small in the region under observation, the effect of this term may not be
measurable in laboratory experiments, which would leave us with an equation
that is essentially equivalent to Maxwell’s.

Second, (53) is equivalent to the Einstein gravitation equation with an
energy field

Tij 5 2Fim Fj
m 2 2gij Fmn F mn 2 3

K,i;j

K
1

3
2

gijgmn
K,m;n

K
(57)

(57) is not quite as we could expect it, because of the unusual relationship
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of the terms in the electromagnetic components of the total energy, while
the nature of the remaining terms is unclear. We can make this look more
familiar by rewriting (53) using a substitution based on (56) and expressing
it in terms of the Einstein tensor, as follows

Gij 5 Rij 2 1–2 gij gmnRmn

5 8p(T(E)ij 1 T(K)ij) (58)

where

T(E)ij 5
1

4p
(Fim Fj

m 2 1–4 gij Fmn F mn) (59)

T(K)ij 5
3

16p 122
Ki;j

K
1 gij12gmn

K,m;n

K
2 4gmn

K,mK,n

K2 2
F
K 222 (60)

and

T(E)i
m

;m 5 2T(K)i
m

;m

5
3

4p 1K,m

K
Fin F mn2 (61)

In this formulation, we see that the equation of structure as applied to
the Randers metric is equivalent to Einstein’s equation of gravity in the
presence of electromagnetic energy, together with an additional energy field
T(K)ij. The two energy fields interact with the force shown in (61). The
substitution that we have made may be justified on the ground that it divides
the total energy into components, based separately on the electromagnetic
and K fields, with the simplest possible expression for the interaction force.
Furthermore, in the spherically symmetric situation at least, as we will show
in Section 4.1.3, this interaction force is smaller than it would be without
the substitution. Quite apart from considerations of familiarity, these findings
support the reformulation of (57) in the manner of (58)–(60).

If the K field were constant everywhere, clearly (54) and (58)–(60)
would match very closely to existing theory. On the other hand, (56) indicates
that the electromagnetic field must generate some variance in K (except in
cases where Fmn Fmn 5 0. Preliminary consideration of issues relating to the
structure of solutions of (53) and (54) and their consistency with astronomical
observations suggests that this effect is limited to the immediate region of
the electromagnetic field, and will not carry over into regions where the
electromagnetic field is neutralized—at least not in the real world, although
it might be permitted under the equations. This analysis, which will not be
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pursued in detail in this paper, is quite uncertain at this stage, and the nature
and effect of the K field clearly require further study.

4. PRELIMINARY INVESTIGATION OF SOLUTIONS

In this section, we will present some straightforward results derived
from the free geodesic equation of structure as applied to the Randers metric
with l 5 0 in some relatively simple cases. This is done primarily for the
purpose of illustrating in relatively crude terms some immediate implications
of the free geodesic theory, and not with the idea of reaching any comprehen-
sive or rigorous conclusions. The following discussions will deal in turn with
the application of the Randers metric equations to basic spherically symmetric
and cosmological models.

4.1. The Spherically Symmetric Case

For purposes of this investigation, we will use polar coordinates repre-
sented by t, r, u, and f, and define the metric elements as follows:

gtt 5 a(r)

grr 5 b(r)

guu 5 r2

gff 5 r2 sin2(u)

At 5 f (r) (62)

The other variable in this model is K, which is also understood to be a
function of r only.

The equation of structure as represented in (53) and (54) may now be
expressed by the following four equations:

1 r2

K3!ab
f,r2

,r

5 0 (63)

1 r2

K3!ab
(4f 2 1 a),r2

,r

5 0 (64)

11
r

2
3
2

K,r

K 2 1a,r

a
1

b,r

b 2 1 3
K,r,r

K
5 0 (65)

b 2 1 1
r
2 1b,r

b
2

a,r

a 2 2 2r2
f,r

2

a
1 3r

K,r

K
5 0 (66)
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Since our purpose is primarily to study the effects that the K-field might
have in ordinary observable events, we will be content with formulating a
polar approximation to a solution, restricted to asymptotically flat cases
with appropriate choices for the limiting values of the variables. Taking the
approximation to a second order of smallness in all variables, we have for
sufficiently large r

f ' q
1
r

1 3qk
1
r2 (67)

a ' 21 1 2M
1
r

1 (6Mk 2 4q2)
1
r2 (68)

b ' 1 1 (2M 1 6k)
1
r

1 (4M 2 1 27 Mk 1 42k2 1 5q2)
1
r2 (69)

K ' 1 1 k
1
r

1 1Mk 1
7k2

2
1 q22 1

r2 (70)

where M, q, and k are parameters which may be taken to represent a central
mass, electric charge, and “K source” located at the origin.

In view of the preliminary conclusions drawn from the analysis referred
to at the end of Section 3.7, we will generally assume that k, which represents
a generator of a K field that is independent of the electromagnetic field, must
be negligible or zero.

4.1.1. Units

For purposes of the following discussions we will adopt geometrized
Planck units in which G 5 c 5 " 5 1. We will refer to these units as
“natural” units. The natural units of length, time, mass, and charge are the
Planck length, Planck time, Planck mass, and Planck charge:

lP 5 !G"

c3 ' 1.6 3 10233 cm (71)

tP 5
lP

c
' 5.4 3 10244 sec (72)

mP 5
lPc2

G
' 2.2 3 1025 gm (73)

qP 5 !"c ' 5.6 3 1029 esu (74)

Because we have chosen to scale the equations of gravity in such a way
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that gtt → 21 and grr → 1 in the asymptotically flat limit, the natural units
will also serve as units for the time (t) and radial (r) coordinates in that limit.

Measuring the charge of the electron in these units, we have

e

!"c
5 !a ' 8.5 3 1022 (75)

where a is the fine structure constant.

4.1.2. The Interaction Force

If k 5 0, the most significant term in the interaction force defined in
(61), from (67) and (70), is

T(E)i
m

;mri 5 2T(K)i
m

;m ri

'
q4

2pr7 (76)

where ri represents a unit vector in the direction of the r coordinate. By
contrast, if we started with Tij based directly on (57), defining one energy
component as (1/4p)(FimFj

m 2 gijFmnF mn) and the other energy component
as (3/16p)(22K,i;j/K 1 gijgmnK,m;n/K ), we would have an additional term in
the interaction force:

3
16p

(EmnE mn),iri '
3q2

4pr5 (77)

For sufficiently large r, this term would outweigh the interaction force found
in (76) by a substantial factor. In the case of an electric charge equal to that
of the electron, with no K source, at the Compton radius of the electron this
factor would be 3r2/2a ' 4.2 3 1042. This supports the adoption of the
formulation in (58)–(60), which eliminates the unnecessarily large interaction
force term and gives us two nearly independent energy fields.

4.1.3. The Electromagnetic Field

In the absence of an independent K source, (67) shows that the extra
term in (54) has no effect on the electromagnetic field up to the second order
of polar terms. If we carry out the estimation to the third order, we find
a term 5–2 q3/r3. This term is less than the first-order term by a factor of
2–5 r2/q2. For a charge equal to that of the electron, at the Compton radius this
factor has a value of approximately 1.1 3 1042. Clearly an effect of such
small size would not be detected in ordinary laboratory experiments, and we
may say that (54) appears consistent with observed reality.
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4.1.4. The Gravitational Field

Looking at (68), we see that the electromagnetic charge affects gtt by
a term 24q2/r2, as compared with 2q2/r2 in the Reissner–Nordstrom solution.
The increased value arises from the second-order influence of the electric
charge on the K field, as reflected in (70), which affects gtt by way of the
term (3/8p)gijgmnK,m;n/K in (60). This does not appear to be inconsistent with
any experimental evidence. Our knowledge of the effect of charged particles
on the gravitational field is largely theoretical, and it does not seem unreason-
able to assume that a significant part of it arises from sources other than the
electromagnetic field itself. Taking account of the additional mass in the K
field generated by the electromagnetic field would simply have the effect of
increasing the theoretical radius of the electron by a factor of four over the
classical Compton radius.

4.1.5. The K Energy Field

Restricting ourselves again to the situation where k 5 0, we can determine
the values of the energy fields surrounding a charged particle, as follows:

T(E)tt '
1

8p
q2

r4 (78)

T(K)tt ' 2
3

4p
q2

r4 (79)

T(E)rr ' 2
1

8p
q2

r4 (80)

T(K)rr ' 2
3

2p
q2

r4 (81)

T(E)ff 5 T(E)uu sin2(u) '
1

8p
q2 sin2(u)

r2 (82)

T(K)ff 5 T(K)uu sin2(u) '
3

2p
q2 sin2(u)

r2 (83)

These results are somewhat troubling in that they show that the K energy
field in this case violates the weak energy condition. It is important to note,
however, that the K energy field does satisfy the strong energy condition:

T(K)tt 2 1–2 gttgmnT(K)mn 5
3

8p
q2

r2 (84)

Furthermore, this negative energy field can be viewed as something of a
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“phantom” because (1) its interaction with the electromagnetic field is
extremely weak, as discussed in Section 4.2.2, and (2) the interaction between
the K fields of two nearby particles should also be expected to be weak
because the more significant components (in the spherically symmetric case)
of the K energy, (3/8p)(2K,i;j/K 1 gijgmnK,m;n/K ), are essentially additive for
sufficiently large r, where K,i;j ¿ K. Given the fact that the weak energy
condition is only a theoretical restriction, and that in practical terms the
effects of the K field appear consistent with observed results, we do not
regard the violation of the weak energy condition in this case to be a stumbling
block to the consideration of generalized relativity as a theory applicable to
our universe.

4.2. The Cosmological Case

A strictly homogeneous, isotropic solution of (53)–(54) can have no
electromagnetic field, assuming compliance with the Lorentz gauge. The
cosmological solution of these equations therefore resolves to the equations
of the Robertson–Walker model with energy field limited to T(K)ij, where K
is a function of time only. Adopting the approach used in Wald (1984), we have

gtt 5 21 (85)

gxy 5 a2(t)yxy (86)

where (1) t is the time coordinate, (2) the xy subscripts refer to any pair of
spatial coordinates, (3) the spatial coordinates are c (the radial coordinate,
normalized to the size of the universe in the positively curved case), u, and
f; (4) ycc 5 1, and (5) yuu 5 yff/sin2(u) 5 either c, sin(c), or sinh(c),
depending on whether space is flat, positively curved, or negatively curved.

We now find that T(K)ij corresponds to a perfect fluid with density
and pressure

r 5 2
3

16p

K,t,t

K
1

9
16p

a,tK,t

aK
(87)

P 5 2
3

16p

K,t,t

K
2

3
16p

a,tK,t

aK
(88)

The evolution equations are

3
a2

,t

a2 5 8pr 2
3k
a2 5 2

3
2

K,t,t

K
1

9
2

a,tK,t

aK
2

3k
a2 (89)

3
a,t,t

a
5 24p(r 1 3P) 5 3

K,t,t

K
(90)
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where k is a constant which is set equal to 0 in the case of flat space, 1 in
the case of positively curved space, or 21 in the case of negatively curved
space. (This k, of course, has nothing to do with our earlier K source k.)

Equation (90) is solved by either:
Case 1:

a 5 aK (91)

where a is a constant; or
Case 2:

K 5 !a/y,t (92)

a 5 y!a/y,t (93)

where a is a constant and y is an arbitrary smooth function of time. In either
of these cases, we can substitute in (89) and have a single second- or third-
degree differential equation in a single function of t. Working out these
solutions is beyond the scope of this paper. In the simplest case, however,
which is Case 1 above in a flat universe, it is easy to see that we have

K 5 a 5 egt (94)

r 5
3

8p
g2 (95)

P 5 2
3

8p
g2 (96)

where g is an arbitrary constant and we have eliminated constant scale factors.
[Note that although (94) indicates an expanding universe if g . 0, the energy
density and pressure of the K field remain constant, indicating an element
of “continuous mass creation” in the K field in this model.]

It may be questioned whether the foregoing analysis has any real mean-
ing, since the universe certainly contains energy derived from electromagnetic
fields and other sources other than the K field. Such energy may originate
from locally nonisotropic fields which are averaged out to a globally isotropic
perfect fluid energy in the Robertson–Walker model. It is not beyond the
realm of possibility, however, that the universe may contain a significant, or
even dominant, isotropic K-energy field equivalent or comparable to that
described in (94)–(96). In that case, we may have found another explanation
for the calculated presence of dominant quantities of “dark matter” throughout
the universe.

4.3. Beyond the Simple Cases

Our study of solutions has yielded some interesting conclusions in certain
very simple and limited cases. Other cases will doubtless raise significant
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complexities. In particular, additional significant and possibly unpredictable
effects may begin to appear from the influence of the K field where Fij

becomes very large, such as the region very close to a charged particle. In
such a region, however, we would also have to consider, on the observational
side, the influence of the strong and weak fields and other quantum effects,
and, on the theoretical side, the possible additional effects that would arise
from adopting a nonzero value for l or from including additional elements
of the geodesic function which are not included within the Randers-compatible
model on which we have focused. A great deal more work is required,
therefore, before we may begin to assess the applicability and predictive
value of the free geodesic theory in such a realm.

5. CONCLUSION

Our study has shown that the basic conceptual premises of the free
geodesic theory lead rather directly to a result which represents a significant
expansion of the ability of relativity theory to account for the behavior of
observed phenomena. A large field remains to be explored which may show
further correspondences to additional aspects of observed reality. Further
work in this field would appear called for on the basis of these initial results.
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